VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (C.S.E. : CBCS) VI-Semester Main Examinations, January-2021 Image Processing

(Elective-I)
Max. Marks: 60
Time: 2 hours
art-B
Note: Answer any NINE questions from Part-A and any THREE from Part-B
Part-A ($9 \times 2=18$ Marks)

$$
\text { Part-B }(3 \times 14=42 \text { Marks })
$$

13. a) What are the components of image processing system and with the required diagram explain each component.
b) Consider the 2 image subsets S_{1} and S_{2} as shown below. For $v=\{1\}$ determine whether these 2 subsets are a) 4 -adjacent b) 8 -adjacent or c)m-adjacent

	S_{1}				S_{2}				
0	0	0	0	0		0	1	1	0
1	0	0	1	1	0	1	0	0	1
1	0	0	1	0	0	1	0	0	e
0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	1	1	1

14. a) Explain one dimensional Fourier transform and its inverse, use relevant graphs, and describe changes in Fourier transform if number of points in discrete function doubles.
b) Illustrate any two sharpening frequency domain filters with relevant diagrams and expressions.
15. a) What is region based segmentation; explain region splitting and merging process for image segmentation.
b) Find the equalized histogram transformation for the given 8 -bit hypothetical image of size 64×64.

r_{k}	n_{k}
r_{0}	790
r_{1}	1023
r_{2}	850
r_{3}	656
r_{4}	329
r_{5}	245
r_{6}	122
r_{7}	81

16. a) Explain image compression model with diagrams.
b) Apply Huffman coding method for developing variable length codes for symbols a , b, c, d, e and f.

Symbol	a	b	C	d	e	f
Probability	0.45	0.13	0.12	0.16	0.09	0.05

$\begin{array}{llll}7 & 1 & 1 & 1\end{array}$
$\begin{array}{llll}7 & 3 & 1 & 2\end{array}$
$7 \quad 2 \quad 2$ 2
$7 \quad 1 \quad 3$
$7 \quad 3 \quad 3$
17. a) Distinguish the various noise models with mean and variance of noise functions, and draw the PDF of different noise functions.
b) Compare Pseudo color image processing and full color image processing.
18. a) Illustrate how Linear sensors, Array Sensors and Linear sensor strips useful for image acquisition.
b) Show that Fourier transform of the impulse train $S_{\Delta T}$ is $\frac{1}{\Delta \mathrm{~T}}\left(\sum_{n=-\infty}^{\infty} F\left(\mu-\frac{n}{\Delta \mathrm{~T}}\right)\right)$
19. Answer any two of the following:
a) Suppose that an image has the intensity $\operatorname{PDF} \operatorname{Par}_{\mathrm{r}}(\mathrm{r})=2 \mathrm{r} /(\mathrm{L}-1)^{2}$ for $0 \leq$ $\mathrm{r} \leq(\mathrm{L}-1)$ and $\mathrm{P}_{\mathrm{r}}(\mathrm{r})=0$ for all other values. Find the transformation function that will produce an image whose intensity PDF is $P_{z}(z)=3 z^{2} /(L-1)^{3}$ for $0 \leq r \leq(L-1)$ and $P_{z}(z)=0$ for other values of z.
b) Find the arithmetic code for the message $a_{1} a_{2} a_{3} a_{3} a_{4}$
c) Explain the need for HIS and RGB color model and how color value is converted from HIS specification to RGB specification and Vice Versa.

$|$| 7 | 2 | 5 | 2 |
| :--- | :--- | :--- | :--- |
| 7 | 2 | 5 | 2 |
| 7 | 2 | 1 | 1 |
| 7 | 3 | 2 | 3 |
| 7 | 3 | 3 | 2 |
| 7 | 3 | 4 | 2 |
| 7 | 2 | 5 | 2 |
| 7 | | | |
| 7 | | | |

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	60
2	Knowledge on application and analysis (Level-3 \& 4)	40
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	-

